Master's Program in Applied Mathematics

Department of Mathematics

Teaching Unit	Subject	Credit	Coefficient	Lecture	Tutorial	Lab	Continuous Assessement	Final Exam
Fundamental unit credit=12 coefficient=6	Complementary Topics in Probability Theory	6	3	3h	1h30	x	33%	67%
	Complementary Topics on Integration and Lebesgue Spaces	6	3	3h	1h30	x	33%	67%
Fundamental unit credit=6 coefficient=3	Functional analysis 1 (Required subject)	6	3	3h	1h30	x	33%	67%
Methodological unit credit=9 coefficient=5	Optimization	5	3	1h30	1h30	X	33%	67%
	Numerical methods 1	4	2	1h30	1h30	1h30	40%	60%
Discovery unit credit=2 coefficient=1	Research methodology	2	1	1h30	X	x	x	100%
Transversal unit credit=1 coefficient=1	Corruption and deontology	1	1	1h30	X	x	x	100%

Semester 2

Teaching Unit	Subject	Credit	Coefficient	Lecture	Tutorial	Lab	Continuous Assessement	Final Exam
Fundamental unit credit=12 coefficient=6	Fourier analysis	6	3	3h	1h30	x	33%	67%
	Distributions 1	6	3	3h	1h30	X	33%	67%
Fundamental unit credit =6 coefficient=4	Functional analysis 2 (Required subject)	6	4	3h	1h30	x	33%	67%
Methodological unit credit=5 coefficient=2	Numerical methods 2	5	2	1h30	1h30	1h30	40%	60%
Methodological unit credit=4 coefficient=2	Differential Equations in Banach Spaces - Calculus of Variations	4	2	1h30	1h30	X	33%	67%
Discovery unit credit=2 coefficient=1	Computer Science (Software)	2	1	1h30	x	1h30	33%	67%
Transversal unit credit=1 coefficient=1	English 1	1	1	1h30	X	x	x	100%

Teaching Unit	Subject	Credit	Coefficient	Lecture	Tutorial	Lab	Continuous Assessement	Final Exam
Fundamental unit credit=12 coefficient=6	Spectral Theory of Operators	6	3	3h	1h30	x	33%	67%
	Elliptic Variational Problems	6	3	3h	1h30	X	33%	67%
Fundamental unit credit=6 coefficient=3	Distributions 2	6	3	3h	1h30	x	33%	67%
Methodological unit	Semi groups and Applications to PDE	5	3	3h	1h30	X	33%	67%
credit=9 coefficient=5	Approximation Theory	4	2	1h30	1h30	1h30	40%	60%
Discovery unit credit=2 coefficient=1	Seminars	2	1	1h30	X	x	100%	x
Transversal unit credit=1 coefficient=1	English 2	1	1	1h30	X	x	x	100%

1st Year Master's in Mathematics: Applied Mathematics

Semester 1

Fundamental unit (UEF)

Core Unit (UEF1)

- **Course:** Complementary Topics in Probability Theory
 - Credits: 3
 - **Coefficient:** 6
 - **Objectives:** Enhance students' knowledge in probability theory.
 - **Prerequisites:** Basic understanding of probability and measure theory from undergraduate studies.
 - **Content:**
 - 1. Random Vectors:
 - Probability laws of random vectors.
 - Covariance matrix.
 - Inequalities involving random variables (e.g., Bienayme-Chebyshev, Markov).
 - Independence of random variables.
 - Gaussian random vectors.
 - Conditional expectation.
 - 2. Convergence of Random Variable Sequences:
 - Convergence in distribution.
 - Almost sure convergence.
 - Convergence in probability.
 - Convergence in p-th order mean.
 - 3. Characteristic and Generating Functions:
 - Characteristics of sums of independent random variables.
 - Inversion formula.
 - Moments and generating functions.
 - Assessment: Continuous work (33%), Final Exam (67%).
 - **References:**
 - G. Reischer et al., "Théorie des Probabilités: Problèmes et Solutions," Presses Université du Québec, 2002.
 - Jacod & Protter, "L'essentiel en Théorie des Probabilités," 2002.

Semester 1

Core Unit (UEF1)

• **Course:** Complementary Topics on Integration and Lebesgue Spaces

- Credits: 3
- **Coefficient:** 6
- **Objectives:** Advance understanding of integration theory.
- **Prerequisites:** Measure and integration theory from undergraduate studies.
- **Content:**
 - 1. Lebesgue Integration on \mathbb{R}^n :
 - Recap and extensions of Lebesgue integration on \mathbb{R} .
 - Product measure.
 - Fubini and Tonelli theorems.
 - Lebesgue measure on Borel sets in \mathbb{R}^n .
 - Convolution.
 - Convergence theorems.
 - 2. Lp Spaces ($\Omega \subset \mathbb{R}^n$):
 - Hilbertian analysis and $L2(\Omega)$ space.
 - Duality between Lp spaces.
 - Topology of Lp spaces: density, separability, compactness.
 - 3. Fourier Transform:
 - Fourier transform in $L1(\Omega)$.
 - Fourier transform in $L2(\Omega)$.
 - Assessment: Continuous work (33%), Final Exam (67%).
- **References:**
 - G. Reischer et al., "Théorie des Probabilités: Problèmes et Solutions," 2002.
 - J. Jacod & P. Protter, "L'essentiel en Théorie des Probabilités," 2002.

Core Unit (UEF2)

- Course: Functional Analysis 1
 - Credits: 3
 - **Coefficient:** 6
 - **Objectives:** Deepen knowledge in functional analysis.
 - **Prerequisites:** Topology from undergraduate studies.
 - **Content:**
 - 1. Continuity and Convergence in Metric Spaces.
 - 2. Functional Spaces:
 - Types of convergence (simple, absolute, uniform, compact).
 - Equicontinuity and the Ascoli-Arzelà Theorem.
 - Stone-Weierstrass Theorem.
 - 3. Banach Spaces:
 - Spaces of continuous functions C(Ω), spaces of differentiable functions Ck(Ω).
 - 4. Bounded Linear Operators in Banach Spaces:
 - Fundamental theorems (Banach-Steinhaus, open mapping, closed graph).
 - 5. Duality in Banach Spaces and the Hahn-Banach Theorem.

- 6. Weak Topologies.
- 7. Reflexive and Separable Spaces.
- Assessment: Continuous work (33%), Final Exam (67%).

• **References:**

0

- V. Trénoguine, "Analyse Fonctionnelle," Editions MIR-Moscou, 1985.
- A. Kolmogorov & S. Fomine, "Elements de la Théorie des Fonctions et de l'Analyse Fonctionnelle," Editions MIR-Moscou, 1973.

Semester 1

Methodological Unit (UEM)

Core Unit (UEM1)

- **Course:** Optimization
 - Credits: 5
 - **Coefficient:** 3
 - **Objectives:** Develop advanced knowledge in optimization problems.
 - **Prerequisites:** Undergraduate optimization coursework.
 - Content:
 - 1. Optimization and Convexity:
 - Definition of an optimization problem.
 - Examples from physics and geometry.
 - General theorems on existence and uniqueness of the minimum for convex functions.
 - Applications in finite and infinite dimensions.
 - 2. Optimization with Constraints:
 - Lagrange multipliers.
 - Saddle points and Lagrangian function.
 - Duality.
 - 3. Iterative Algorithms:
 - Gradient method.
 - Projected gradient.
 - Gauss-Seidel method.
 - Conjugate gradient method.
 - Uzawa's algorithm.
 - Assessment: Continuous work (33%), Final Exam (67%).
 - **References:**
 - G. Allaire, "Analyse Numérique et Optimisation," 2005.
 - J. Baptiste Hiriart-Urruty, "Optimisation et Analyse Convexe: Exercices Corrigés," EDP Sciences, 2009.

Semester 1

Core Unit (UEM1)

• **Course:** Numerical Methods 1

- Credits: 4
- **Coefficient:** 3
- **Objectives:** Develop expertise in numerical analysis.
- **Prerequisites:** Numerical analysis from undergraduate studies.
- **Content:**
 - 1. Approximation of Solutions to Linear Systems:
 - Norms and convergence promoters.
 - 2. Eigenvalues and Eigenvectors.
 - 3. Solving Nonlinear Systems:
 - Newton's method.
 - Accelerated Newton's method.
 - Von Mises method.
 - Optimization methods.
 - Gradient and steepest descent methods.
 - Conjugate gradient method.
- Assessment: Continuous work (33%), Final Exam (67%).
- **References:**
 - J. Baranger, "Analyse Numérique," Hermann.
 - C. Brézinski, "Introduction à la Pratique du Calcul Numérique," Dunod.
 - M. Sibony, "Analyse Numérique," Hermann.
 - M. Lakrib, "Cours d'Analyse Numérique," OPU.

Discovery Unit (UED)

Core Unit (UED1)

- Course: Research Methodology
 - Credits: 2
 - **Coefficient:** 1
 - **Objectives:** Learn to write theses, research topics, etc.
 - **Prerequisites:** None.
 - **Content:**
 - 1. Introduction.
 - 2. Understanding the Assigned Work.
 - 3. Choosing and Limiting the Topic.
 - 4. Conducting Literature Review.
 - 5. Analysing Documents.
 - 6. Writing the Work.
 - Assessment: Continuous work (33%), Final Exam (67%).
 - References:
 - C. Gosselin, "L'information et le Travail de Recherche,"
 - Educatechnologiques, Vol. 2, No. 1, Université Laval, Québec, 1995.

 Mediatix, "Initiation à la Recherche Documentaire sur l'Internet," Université Paris X.

Semester 1

Transversal Unit (UET)

Core Unit (UET1)

- Course: Corruption and Work deontology
 - \circ Credits: 1
 - **Coefficient:** 1
 - **Objectives:** Raise awareness about corruption risks and encourage ethical practices.
 - **Prerequisites:** None.
 - Content:
 - 1. Concepts of Corruption:
 - Definition and religious perspectives.
 - 2. Types of Corruption:
 - Financial, administrative, moral, and political corruption.
 - 3. Manifestations of Administrative and Financial Corruption:
 - Nepotism, favoritism, extortion, fraud, public fund mismanagement, organizational violations.
 - 4. Causes of Corruption:
 - Theoretical causes (civilizational, political, structural, economic, etc.).
 - General causes (weak institutions, conflicts of interest, rapid profit-seeking).
 - Assessment: Continuous work (33%), Final Exam (67%).
 - **References:**
- موسى, صافي إمام 5041 (. ه 5891 / م.) استراتيجية الإصلاح الإداري وإعادة التنظيم في نطاق الفكر والنظريات (ط5
 - الرياض : دار العلوم للطباعة والنشر.
 - http://www.islameiat.com/doc/article.php?sid=276&mode=&order=0
 - بحر, يوسف الفساد الإداري ومعالجته من منظور إسلامي
 - http://www.scc-online.net/thaqafa/th_1.htm
 - حمودي , همام . مصطلح الفساد في القرآن الكريم.
 - http://209.61.210.137/uofislam/behoth/behoth_quran/16/a1.htm
 - الفقي , مصطفى الفساد الإداري والمالي بين السياسات والإجراءات
 - http://www.cipe-egypt.org/articles/art0900.htm
 - محمود, مهيوب خضر, من معالم ألمدرسة العمرية في مكافحة الفساد.
 - http://www.hetta.com/current/mahyoob23.htm •

Fundamental unit (UEF)

Core Unit (UEF1)

- Course: Fourier Analysis
 - Credits: 6
 - **Coefficient:** 3
 - **Objectives:** Enhance understanding of Fourier methods in mathematical analysis.
 - **Prerequisites:** Mathematical physics equations and Fourier series from undergraduate studies.
 - Content:
 - 1. Boundary Value Problems:
 - Mathematical formulation of physical problems.
 - Partial differential equations.
 - Laplacian in various coordinate systems.
 - 2. Fourier Series:
 - Recap of Fourier series.
 - Extensions to multiple variables.
 - Applications to boundary value problems.
 - 3. Techniques and Applications:
 - Heat equation.
 - Hilbertian techniques and Sobolev spaces on the circle.
 - **Assessment:** Continuous work (33%), Final Exam (67%).
 - References:
 - G. P. Tolstov, "Fourier Series," Dover Publications.
 - W. E. Williams, "Partial Differential Equations," Clarendon Press, Oxford, 1980.

Semester 2

Fundamental unit (UEF)

Core Unit (UEF1)

- **Course:** Distributions 1
 - Credits: 6
 - **Coefficient:** 3
 - **Objectives:** Provide foundational knowledge in distribution theory.
 - **Prerequisites:** Analysis and algebra from undergraduate studies.
 - Content:
 - 1. Basics:
 - Spaces of test functions and distributions.
 - Elementary operations.
 - Differentiation of distributions.
 - Compactly supported distributions.

- 2. Applications:
 - Convolutions.
 - Tensor products.
- Assessment: Continuous work (33%), Final Exam (67%).
- **References:**
 - R. Dautray & J. L. Lions, "Analyse Mathématique et Calcul Numérique," Masson, 1988.
 - R. Gouyon, "Intégration et Distributions," Vuibert, 1967.

Fundamental unit (UEF)

Core Unit (UEF2)

- **Course:** Functional Analysis 2
 - Credits: 6
 - **Coefficient:** 3
 - **Objectives:** Deepen understanding of functional analysis principles.
 - **Prerequisites:** Analysis and algebra from undergraduate studies.
 - Content:
 - 1. Hilbert Spaces:
 - Projections and representation theorems.
 - Hilbert bases.
 - 2. Operators:
 - Closed and closable operators.
 - Adjoints, resolvents, and spectra.
 - Assessment: Continuous work (33%), Final Exam (67%).
 - References:

0

- V. Trénoguine, "Analyse Fonctionnelle," MIR-Moscou, 1985.
- A. E. Taylor, "Introduction to Functional Analysis," Wiley, 1957.

Semester 2

Methodological Unit (UEM)

Core Unit (UEM1)

- Course: Numerical Methods 2
 - Credits: 5
 - **Coefficient:** 2
 - **Objectives:** Deepen knowledge of numerical methods in differential equations.
 - **Prerequisites:** Numerical analysis from undergraduate studies.
 - **Content:**
 - 1. Numerical Methods in Ordinary and Partial Differential Equations:
 - General overview and one-step methods.

- Multi-step methods.
- Finite element methods.
- Applications of finite element methods to two-dimensional problems for partial differential equations:
 - Existence and uniqueness of solutions.
 - Numerical studies.
 - Computational implementation.
- Assessment: Continuous work (33%), Final Exam (67%).

• **References:**

- J. Baranger, "Analyse Numérique," Hermann.
- C. Brézinski, "Introduction à la Pratique du Calcul Numérique," Dunod.
- M. Sibony, "Analyse Numérique," Hermann.
- M. Lakrib, "Cours d'Analyse Numérique," OPU.

Semester 2

Methodological Unit (UEM)

Core Unit (UEM1)

- Course: Differential Equations in Banach Spaces Calculus of Variations
 - Credits: 4
 - **Coefficient:** 2
 - **Objectives:** Provide in-depth knowledge of differential equations and calculus of variations.
 - **Prerequisites:** Elementary differential equations, topology, measure, and integration.
 - **Content:**
 - 1. Differential Equations (Cauchy Problem):
 - Maximum solutions, global uniqueness.
 - Cauchy problem solutions under Lipschitz and continuity conditions.
 - 2. Flows of Differential Equations:
 - Inequalities verified by solutions.
 - Continuity and differentiability of flows.
 - Parametric dependence.
 - 3. Linear Differential Equations:
 - General properties and homogeneous equations.
 - Methods of constant variation and resolvent equation analysis.
 - Homogeneous autonomous linear equations in $\mathbb{R}n$.
 - 4. Calculus of Variations:
 - C1 curve spaces.
 - Lagrangian functional differentiation.
 - Euler equations.
 - Legendre transformations and Hamiltonian equations.
 - Assessment: Continuous work (33%), Final Exam (67%).
 - **References:**

- Constantin Carathéodory, "Calculus of Variations and Partial Differential Equations of the First Order," 1967.
- Henri Cartan, "Cours de Calcul Différentiel," Hermann, Paris, 1977.
- Léonard Todjihounde, "Calcul Différentiel: Cours et Exercices Corrigés," Cépaduès-Editions, 2004.

Discovery Unit (UED)

Core Unit (UED1)

- **Course:** Computer Science (Software)
 - Credits: 2
 - **Coefficient:** 1
 - **Objectives:** Familiarize students with essential software for mathematics.
 - **Prerequisites:** Basic computer science knowledge.
 - **Content:**
 - 1. LaTeX.
 - 2. Scientific Workplace.
 - 3. MATLAB.
 - 4. Programming in C and C++.
 - 5. SAS.
 - Assessment: Continuous work (33%), Final Exam (67%).
 - References:
 - Web sites, books, etc.

Semester 2

Transversal unit (UET)

Core unit (UET1)

- Course: English 1
 - Credits: 1
 - **Coefficient:** 1
 - **Objectives:** Develop technical English skills.
 - **Content:** Determined by the instructor.
 - Assessment: Continuous work (33%), Final Exam (67%).
 - **References:**
 - Web sites, books, etc.

2d Year Master's in Mathematics: Applied Mathematics

Semester 3

Fundamental unit (UEF)

Core Unit (UEF1)

- **Course:** Spectral Theory of Operators
 - Credits: 6
 - **Coefficient:** 3
 - **Objectives:** Equip students with knowledge in the spectral theory of operators.
 - **Prerequisites:** Functional Analysis 1, Functional Analysis 2, and Topology.
 - Content:
 - 1. Bounded Operators:
 - Definitions and examples.
 - Bounded linear operators.
 - Inverse operators.
 - Self-adjoint operators and orthogonal projection operators.
 - Spectrum of an operator, resolvent, spectral radius.
 - 2. Unbounded Operators:
 - Closed operators, adjoint operators.
 - Symmetric and self-adjoint operators.
 - Spectrum and resolvent set.
 - 3. Compact Operators or Compact Resolvent:
 - Compactness and weak convergence.
 - Spectral theory of compact self-adjoint operators.
 - Spectral decomposition of compact self-adjoint operators and compact resolvent.
 - Picard's theorem and its applications.
 - Assessment: Continuous work (33%), Final Exam (67%).

• **References:**

- Angus E. Taylor, "Introduction to Functional Analysis," Wiley International Edition, 1957.
- D. Huet, "Décomposition Spectrale et Opérateurs," PUF, 1976.
- V. Trénoguine, "Analyse Fonctionnelle," Mir-Moscou, 1985.

Semester 3

Fundamental unit (UEF)

Core Unit (UEF1)

- Course: Elliptic Variational Problems
 - Credits: 6
 - **Coefficient:** 3
 - **Objectives:** Provide students with knowledge on elliptic problems.
 - **Prerequisites:** Analysis courses from undergraduate and Master 1 levels.
 - **Content:**

- 1. Sobolev Spaces.
- 2. Abstract Variational Problems:
 - Lax-Milgram Theorem.
- 3. Examples of Second-Order Elliptic Problems:
 - Dirichlet problems.
 - Neumann problems.
 - Mixed problems.
- 4. Regularity of Weak Solutions.
- 5. Maximum Principle.
- 6. Elementary Spectral Theory of Elliptic Variational Problems.
- Assessment: Continuous work (33%), Final Exam (67%).
- References:
 - H. Brésis, "Analyse Fonctionnelle," Masson, Paris, 1986.
 - L. C. Evans, "Partial Differential Equations," AMS, Providence, 1988.
 - P. A. Raviart, J.-M. Thomas, "Analyse Numérique des Équations aux Dérivées Partielles," Masson.

Fundamental unit (UEF)

Core Unit (UEF2)

- **Course:** Distributions 2
 - Credits: 6
 - **Coefficient:** 3
 - **Objectives:** Extend knowledge in the theory of distributions.
 - **Prerequisites:** Distributions 1 and undergraduate-level analysis.
 - **Content:**
 - 1. Spaces of Tempered Distributions.
 - 2. Fourier Transforms of Distributions.
 - 3. Sobolev Spaces.
 - 4. Applications to Partial Differential Equations.
 - Assessment: Continuous work (33%), Final Exam (67%).
 - **References:**
 - Vo Khac Khoan, "Espaces Vectoriels Topologiques, Distributions, Équations aux Dérivées Partielles," Vol. 1 and 2.
 - R. Dautray, J.-L. Lions, "Analyse Mathématique et Calcul Numérique," Vol. 3: Transformation, Sobolev, Opérateurs, Masson, 1988.

Semester 3

Methodological Unit (UEM) Core unit (UEM1)

• Course: Semi groups and Applications to Partial Differential Equations

- Credits: 5
- **Coefficient:** 3
- **Objectives:** Equip students with knowledge in semigroup theory and its applications.
- **Prerequisites:** Topology and functional analysis.
- **Content:**
 - 1. Basic Concepts:
 - Sobolev spaces of natural and fractional order.
 - Bounded linear operators, extensions to densely defined operators.
 - Spectral theory, strong continuity, Fréchet derivative.
 - 2. Semigroups:
 - Linear evolution problems with initial values.
 - Semigroups generated by linear operators.
 - 3. Abstract Cauchy Problems:
 - Homogeneous and non-homogeneous initial value problems.
 - Weak solutions, regularity, and asymptotic behavior.
 - 4. Applications to Partial Differential Equations:
 - Parabolic equations.
 - Wave equations.
 - Schrödinger equation.
- Assessment: Continuous work (33%), Final Exam (67%).
- **References:**
 - R. Adams, "Semigroups of Linear Operators and Applications."
 - R. Dautray, J.-L. Lions, "Analyse Mathématique et Calcul Numérique," Vol. 8: Evolution, Semigroups, Variational, Masson, 1988.

Methodological Unit (UEM)

Core unit (UEM1)

- Course: Approximation Theory
 - Credits: 4
 - **Coefficient:** 2
 - **Objectives:** Expand knowledge in approximation theory within specific spaces.
 - **Prerequisites:** Undergraduate and Master 1 level analysis courses.
 - **Content:**
 - 1. Approximations in Normed Spaces.
 - 2. Uniqueness of Best Approximation:
 - Strict convexity.
 - 3. Uniform Approximation:
 - Chebyshev polynomials.
 - 4. Approximation in Hilbert Spaces:
 - Orthogonal polynomials.
 - Least squares approximation.

- Assessment: Continuous work (33%), Final Exam (67%).
- **References:**
 - A. Quaternani, R. Sacco, F. Saleri, "Polynômes Orthogonaux en Théorie de l'Approximation," Springer Milan, 2007.

Discovery Unit (UED)

Core unit (UED1)

- Course: Seminars
 - **Credits:** 2
 - Coefficient: 1
 - **Objectives:** Attend and prepare presentations on functional analysis and mathematical modeling of partial differential equations.
 - **Prerequisites:** Bachelor's and Master 1 level mathematics courses.
 - Content:
 - Topics will focus on:
 - Functional analysis.
 - Classical linear partial differential equations (modeling).
 - Assessment: 100% Continuous work.
 - **References:**
 - Web sites, books, etc.

Semester 3

Transversal Unit (UET)

Core unit (UET1)

- **Course:** English 2
 - **Credits:** 1
 - **Coefficient:** 1
 - **Objectives:** Develop technical English skills.
 - **Content:** Determined by the instructor.
 - Assessment: Continuous work (33%), Final Exam (67%).
 - **References:**
 - Web sites, books, etc.