

University of Abbes Laghrour Khenchela
College of sciences and technology
Department of Computer Science

Academic year: 2024/2025 Level: 1st informatics Subject: Analysis I

A correction of the first exam

Exercise01 (05pts)

Consider the function $f: [-1; 1] \rightarrow [0; 1]$ defined by $f(x) = \sin(\arccos(x))$

1- Calculating f(0), f(1) and f(-1).

$$f(0) = \sin(\arccos(0)) = \sin\left(\frac{\pi}{2}\right) = 1$$

$$f(1) = \sin(\arccos(1)) = \sin(0) = 0$$

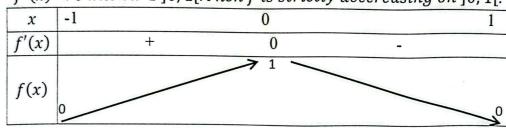
$$f(-1) = \sin(\arccos(-1)) = \sin(-\pi) = 0$$

2- Finding f'(x) for $x \in]-1$; 1[then sketch the table of variation of the function f. Since sine and arcos are differentiable over \mathbb{R} ,]-1; 1[respectively, we thus conclude that the composite of both functions f is differentiable on]-1; 1[.

$$f'(x) = [\arccos(x)]' \times \sin'(\arccos(x)) = -\frac{1}{\sqrt{1 - x^2}} \times \cos(\arccos(x))$$

$$f'(x) = -\frac{x}{\sqrt{1-x^2}}$$

- $f'(x) \ge 0$ when $x \in]-1;0]$. Then f is increasing on]-1;0].
- f'(x) < 0 when $x \in]0; 1[$. Then f is strictly decreasing on]0; 1[.



3- Showing that $\forall x \in [-1; 1] \sin(\arccos(x)) = \sqrt{1 - x^2}$ We know that $\sin^2(\arccos(x)) + \cos^2(\arccos(x)) = 1$. Then $\sin^2(\arccos(x)) + x^2 = 1$.

$$\forall x \in [-1; 1] \sin(\arccos(x)) = \sqrt{1 - x^2}.$$

4- Deducing that the graph of f is the top half of unit circle.

We have found that $f(x) = \sqrt{1 - x^2}$. Then $y = \sqrt{1 - x^2}$, $y \ge 0$ So $x^2 + y^2 = 1$ with $y \ge 0$. This is the top half of unit circle.

Exercise02 (08pts)

1. Determine the reel constants a and b such that $\frac{9}{x^2-5x-14} = \frac{a}{x+2} + \frac{b}{x-7}$.

Using identification gives a = -1 and b = 1.

Therefore
$$\frac{9}{x^2 - 5x - 14} = -\frac{1}{x+2} + \frac{1}{x-7}$$

2. Find the indefinite integral
$$\int \frac{9}{x^2-5x-14} dx$$
, then $\int_0^1 \frac{9}{x^2-5x-14} dx$.

$$\int \frac{9}{x^2 - 5x - 14} \, dx = \int \left(-\frac{1}{x + 2} + \frac{1}{x - 7} \right) \, dx = \ln|x - 7| - \ln|x + 2| + \sqrt{\frac{9}{x^2 - 5x - 14}} \, dx = \ln\left|\frac{x - 7}{x + 2}\right| + c.$$

We thus deduce that
$$\int_0^1 \frac{9}{x^2 - 5x - 14} dx = \left[\ln \left| \frac{x - 7}{x + 2} \right| \right]_0^1 = \ln 2 - \ln \frac{7}{2} = \ln \frac{4}{7}$$
.

3. Using a suitable change of variable to evaluate
$$\int_0^{\frac{\pi}{2}} \frac{9 \cos t}{-14 - 5 \sin t + \sin^2 t} dt.$$

Taking
$$x = \sin t$$
 yields
$$\begin{cases} dx = \cos t \, dt \\ x = 0 \text{ if } t = 0 \\ x = 1 \text{ if } t = \frac{\pi}{2} \end{cases}$$

$$\int_{0}^{\frac{\pi}{2}} \frac{9\cos t}{-14 - 5\sin t + \sin^2 t} dt = \int_{0}^{1} \frac{9}{x^2 - 5x - 14} dx = \ln\frac{4}{7}.$$

4. Let
$$x \in]7; +\infty[$$
, solve the following first order differential equation:

$$y' - \frac{9}{x^2 - 5x - 14}y = \frac{x - 7}{x^2 - 5x - 14}$$

- Integrating factor
$$r(x) = e^{\int \frac{9}{x^2 - 5x - 14} dx} = e^{-ln\left|\frac{x - 7}{x + 2}\right|} = \frac{x + 2}{x - 7}$$

- Multiplying by
$$\frac{x-7}{x+2}$$
 both sides of DE gives $\frac{x+2}{x-7}y' - \frac{9}{(x-7)^2}y = \frac{1}{x-7}$.
That is $\left(\frac{x+2}{x-7}y\right)' = \frac{1}{x-7}$.

- integrating both sides we get
$$\frac{x+2}{x-7}y = \ln(x-7) + c$$
.
Hence $y = (\ln(x-7) + c)\frac{x-7}{x+2} / c \in \mathbb{R}$.

Exercise03 (07pts)

Consider the following second order differential equation:

$$y'' - 4y' + 4y = (2x - 4)e^x \dots (2)$$

1. Solving the homogeneous differential equation given by: y'' - 4y' + 4y = 0. The auxiliary equation is $r^2 - 4r + 4 = 0$ has a repeated root r = 2. Therefore the complementary solution is going to be:

$$y_{c=}(kx+k')e^{2x}$$
 where $k,k' \in \mathbb{R}$.

2. Determining the constants
$$\alpha$$
 and β so that $y_{p=}(\alpha x + \beta)e^x$ is a particular solution

$$y_{p=}(\alpha x + \beta)e^x \Rightarrow y'_{p=}(\alpha x + \alpha + \beta)e^x \Rightarrow y''_{p=}(\alpha x + 2\alpha + \beta)e^x.$$

As y_n is a solution of (2), we get

$$(\alpha x + 2\alpha + \beta)e^x - 4(\alpha x + \alpha + \beta)e^x + 4(\alpha x + \beta)e^x = (2x - 4)e^x$$

Hence $(\alpha x - 2\alpha + \beta)e^x = (2x - 4)e^x$.

Using identification, we find $\alpha = 2$ and $\beta = 0$.

So
$$y_{p=}2xe^{x}$$
.

3. Find the general solution of (2).

Knowing that
$$y = y_p + y_c$$
, we thus write

$$y = 2xe^x + (kx + k')e^{2x} / k, k' \in \mathbb{R}$$