Academic year: 2024/2025 Level: 1st informatics Subject: Analysis I

Final exam

Exercise01 (05pts)

Consider the function $f: [-1; 1] \rightarrow [0; 1]$ defined by $f(x) = \sin(\arccos(x))$

- 1- Calculate f(0), f(1) and f(-1).
- 2- Show that $f'(x) = -\frac{x}{\sqrt{1-x^2}}$ for $x \in]-1$; 1[then sketch the table of variation of the function f.
- 3- Show that

$$\forall x \in [-1; 1] \sin(\arccos(x)) = \sqrt{1 - x^2}$$

4- Deduce that the graph of f is the top half of unit circle.

Exercise02 (08pts)

- 1. Determine the reel constants a and b such that $\frac{9}{x^2-5x-14} = \frac{a}{x+2} + \frac{b}{x-7}$.
- 2. Find the indefinite integral $\int \frac{9}{x^2 5x 14} dx$.

Deduce the value of definite integral $\int_0^1 \frac{9}{x^2 - 5x - 14} dx$.

- 3. Use a suitable change of variable to evaluate $\int_0^{\frac{\pi}{2}} \frac{9\cos t}{-14-5\sin t + \sin^2 t} dt.$
- 4. Let $x \in]7; +\infty[$, solve the following first order differential equation:

$$y' - \frac{9}{x^2 - 5x - 14}y = \frac{x - 7}{x^2 - 5x - 14}$$

Exercise02 (07pts)

Consider the following second order differential equation:

$$y'' - 4y' + 4y = (2x - 4)e^x \dots (2)$$

- 1. Solve the homogeneous differential equation given by: y'' 4y' + 4y = 0.
- 2. Determine the constants α and β so that $y_{p=}(\alpha x + \beta)e^{x}$ is a particular solution of (2).
- 3. Find the general solution of (2).

Good luck