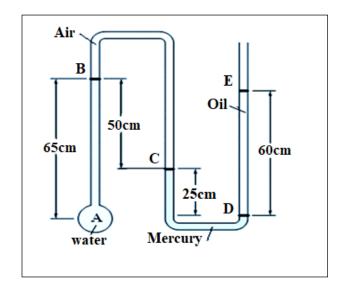
ABBES LAGHROUR UNIVERSITY - KHENCHELA

Faculty of Sciences and Technology Department of Science of Matter

2nd year License: Physics

Final exam in: Fluids Mechanics

25/05/2025 Duration: 1 h 30'


Exercise 1: (5 pts)

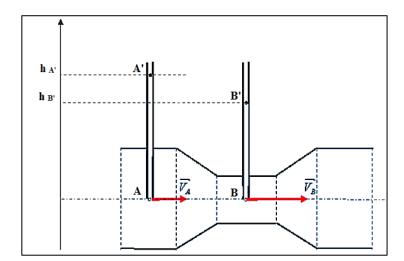
- 1) Calculate the weight (ω) , the density (ρ) , and the specific gravity (SG) of a fluid that weighs 60 kg in a volume of 5 m³.
- 2) Calculate the weight of a volume V = 2 liters of liquid with a density d = 0.918. We give: $\rho_{\text{water}} = 1000 \text{ kg/m}^3$; $g = 9.81 \text{ m} / \text{s}^2$; $\gamma_{\text{water}} = 9.81 \text{ KN/m}^3 = 9810 \text{ N/m}^3$

Exercise 2: (7 pts)

Calculate the pressure at point A, knowing that:

- \checkmark the density of the oil is d oil = 0.85
- * the density of mercury is d Hg=13.6
- $P_B = P_C$

Exercise 3: (8 pts)


In the Venturi tube represented in the diagram below. The diameter of the tube at point A is $D_A = 40$ cm, and at point B it is $D_B = 20$ cm. In order to measure the pressure P_A at point A and the pressure P_B at point B, two water column manometers are connected to the Venturi. These piezometric tubes are graduated and allow for measuring the levels $h_{A'} = 6$ m and $h_{B'} = 3$ m respectively of the free surfaces A' and B'.

We give:

- The pressure at the free surface P $_{A'} = P _{B'} = 1.01 \times 10^5 Pa$
- The density of water = 1000 kg/m^3

We assume that the fluid is perfect.

- 1) Apply the fundamental relationship of hydrostatics between B and B', and calculate the pressure P_B at point B.
- 2) Similarly, calculate the pressure P_A at point A.
- 3) Write the continuity equation between points A and B. Deduce the flow velocity υ_B as a function of υ_A .
- 4) Write Bernoulli's equation between points A and B. Deduce the flow velocity v_B .
- 5) Calculate the volumetric flow rate Qv.

