Université Abbes Laghrour Khenchela Faculté des Sciences et de la technologie Département d'informatique Spécialité : Intelligence Artificielle

<u>Affectations PFEs Master 2 Intelligence Artificielle 2025/2026:</u>

	Enseignant	Titre	Encadré(e)
1	Pr. Mounir	Titre : Système intelligent de détection et de prédiction du risque	Mahfoud Yazid
	Hemam	d'hypertension avec chatbox médicale	
		Description du sujet :	
		Ce projet a pour objectif de développer un système intelligent	
		capable de détecter et prédire le risque d'hypertension à partir de	
		données médicales (âge, tension, IMC, etc.).	
		Le système sera accompagné d'une chatbox médicale permettant à	
		l'utilisateur de dialoguer avec le système pour saisir ses données,	
		poser des questions et recevoir des conseils personnalisés.	
2	Dr. Meriem	Titre : Application de l'Intelligence Artificielle à la Prédiction	Hernane
	Djezzar	Précoce du Diabète Gestationnel	Dhaiaeddine
	J	Description du sujet :	
		Le diabète gestationnel est une complication fréquente de la	
		grossesse, caractérisée par une élévation du taux de sucre dans le	
		sang chez la femme enceinte. Une détection tardive de cette maladie	
		peut entraîner des risques importants pour la mère et le fœtus	
		(accouchement prématuré, hypertension, complications néonatales,	
		etc.).	
		L'objectif de ce projet est de concevoir une application intelligente	
		capable de prédire précocement le risque de diabète gestationnel à	
		partir des données médicales des patientes (âge, indice de masse	
		corporelle, antécédents familiaux, glycémie, etc.), en utilisant des	
		techniques d'intelligence artificielle.	
3	Dr.	Title: Interpretable Machine Learning for Predicting Beehive	Djouhri Nabil
	Bakhouche	Health Using IoT Sensor Data	_ j =
	SAbdelali	Problem Statement	
		The rapid decline of global bee populations has become a major	
		environmental concern, affecting both biodiversity and food security.	
		Traditional monitoring of hives relies on manual inspection, which is	
		inefficient and often unable to detect early signs of stress, disease, or	
		swarming. Recent advances in the Internet of Things (IoT) have	
		enabled continuous data collection from connected beehives,	
		capturing parameters such as temperature, humidity, weight, and	
		sound. While machine learning models can analyze these data for	
		predictive insights, most existing systems act as 'black boxes' that	
		provide limited interpretability. This research aims to design an	
		interpretable and intelligent model that not only predicts hive health	
		but also explains the underlying factors influencing bee colony	
		wellbeing.	
4	Mr.	Sujet : Comparaison des Méthodes d'Explicabilité	Djeridi Islem
	Bakhouche	Description:	.
	Abderraouf	Les modèles d'intelligence artificielle, qu'ils relèvent du Machine	
		Learning ou du Deep Learning, sont généralement conçus pour	
		atteindre une performance élevée sur des tâches spécifiques.	
		Cependant, ils sont souvent perçus comme des « boîtes noires » en	
		raison de l'opacité des processus qui sous-tendent leurs décisions.	
		Pour déployer efficacement ces modèles, il est crucial non seulement	
		d'assurer des prédictions précises, mais aussi de comprendre la	
		logique qui les sous-tend, afin de garantir leur sécurité d'utilisation.	
		L'utilisation de méthodes d'explicabilité permet d'identifier	
		d'éventuels biais ou discriminations. De surcroît, dans de nombreux	

		secteurs, notamment dans le domaine de la santé, l'explicabilité est essentielle.	
		Ce projet vise à évaluer et comparer diverses techniques	
		d'explicabilité utilisées dans les modèles de machine Learning,	
		notamment LIME (Local Interpretable Model-agnostic	
		Explanations), SHAP (SHapley Additive exPlanations), et d'autres	
_	D D 1:	méthodes basées sur des modèles explicables.	A • 1••
5	Dr. Brahim	Title: Explainable Deep Learning for Personalized Learning Path Recommendation	Aouaidjia Maura
	Belgroun	Description:	Mouna
		This project aims to develop an intelligent system that recommends	
		personalized learning paths for students using deep learning while	
		ensuring transparency through explainable AI (XAI). By analyzing	
		learners'	
		activity data—such as quiz results, interactions, and topic mastery—	
		the model generates tailored learning sequences and explains its	
		recommendations using SHAP or attention-based methods,	
		enhancing trust and pedagogical value. The system will be trained	
		and evaluated on the EdNet dataset, a large-scale collection of over 131 million student—content interactions from the Santa AI tutoring	
		platform, offering rich metadata for modeling learning behaviors and	
		supporting both accuracy and interpretability.	
6	Dr. Wahid	Thème: Système multi-agent pour la coordination adaptative du	Chahat Rima
	Chergui	trafic urbain par apprentissage profond	
		Description	
		La gestion du trafic urbain constitue aujourd'hui l'un des défis	
		majeurs des villes intelligentes (Smart Cities). L'augmentation	
		constante du nombre de véhicules, la densification des zones	
		urbaines et les fluctuations imprévisibles des flux de circulation entraînent des congestions fréquentes, une consommation	
		énergétique excessive, ainsi qu'une hausse des émissions polluantes.	
		Les systèmes de gestion du trafic traditionnels reposent	
		généralement sur des plans de feux statiques (fixes dans le temps) ou	
		semi-adaptatifs (pilotés par des capteurs locaux). Ces approches	
		présentent plusieurs limites :	
		• Elles n'intègrent pas la dynamique globale du trafic,	
		• Elles sont incapables d'apprendre ou de s'adapter à des situations	
		inédites (accidents, événements, fluctuations de densité),	
		• Et elles n'exploitent pas la coopération entre intersections voisines.	
		Or, dans un environnement routier interconnecté, chaque intersection	
		influence directement le comportement des intersections adjacentes :	
		une mauvaise synchronisation à un carrefour peut entraîner une	
		propagation de la congestion sur tout le réseau. Ceci met en évidence	
		la nécessité d'un contrôle distribué, intelligent et coopératif des feux	
		de circulation. L'émargance des systèmes multi agents (MAS) et du Deen	
		L'émergence des systèmes multi-agents (MAS) et du Deep Reinforcement Learning (DRL) offre une nouvelle perspective : celle	
		de contrôleurs locaux intelligents, capables d'apprendre de manière	
		autonome à optimiser le trafic, tout en coopérant pour atteindre un	
		objectif global de fluidité.	
		L'objectif est de développer et expérimenter un système multi-agent	
		auto-organisé où chaque carrefour agit comme un agent autonome	
		apprenant à ajuster dynamiquement ses feux de signalisation selon	
7	D.,	les conditions de circulation observées.	Dan4sh - 37 1 1
7	Dr. Boussalem	Thème : Enhancing Disease Prediction in Imbalanced Medical Datasets	Boutaba Yahia
	Mohamed	• Description :	
	1.1011411104	Medical datasets used in automated disease detection are often	
		imbalanced, with a significant underrepresentation of positive cases.	

		This imbalance compromises model performance, particularly their	
		ability to accurately detect rare cases, thereby increasing the risk of	
		false negatives. This work aims to study the impact of this imbalance	
		on the performance of classification models through the analysis of	
		public datasets (both tabular and medical images). Several correction	
		methods will be evaluated, including over-sampling (e.g., SMOTE),	
		under-sampling, class weighting, and cost-sensitive learning. The	
		specific case study will be defined later based on available datasets	
		and clinical relevance. In addition, a specific data augmentation	
		approach will be proposed to generate synthetic examples of the	
		minority class, with the goal of improving dataset balance and model	
		robustness.	
8	Dr. Djamel	Title: Construction of an ontology in the field of tourism	Laiche Ilyes
	Nessah	Description:	
		The tourism sector plays a very important role in local development,	
		as it can be a highly promising source of economic growth.	
		However, it is necessary to provide rich knowledge about tourist	
		sites, available amenities, transportation options, regions, and so on,	
		in order to help tourists make their choices and access useful	
		decision-support information.	
		In this regard, since our province has many important tourist sites, it	
		is essential to provide appropriate knowledge to stimulate this sector	
		and attract tourists, which will have a major impact on regional	
		development.	
		For this purpose, ontology represents a powerful means to model the	
		domain, establish a shared vocabulary, and perform semantic	
		searches to uncover the sector's potential.	
		Keywords: Domain ontology, tourism, Kms	
9	M. Ayadi	Thème: Proposition d'un système d'information	Friha Laiche
	Abdelghaffar	géographique pour la gestion de l 'eau potable de la wilaya de	
		Khenchela	
		Description:	
		Un système d'information géographique (SIG) est un système qui	
		permet de modéliser, gérer et de représenter des données de type	
		spatiale .Dans ce cadre nous voulons proposer un système	
		d'information géographique qui permet de faciliter la gestion de	
		l'eau potable du territoire de la wilaya de khenchela.	
10	M. Bechoua	Sujet : Explicabilité et détection des biais dans les modèles de	Hamdaoui
	Khaled	recrutement basés sur le machine learning	Naim
		Description	
		Ce projet vise à développer un modèle de recrutement automatisé	
		utilisant des techniques de machine learning pour évaluer et classer	
		les candidats à un emploi à partir de leurs CV et de leurs	
		caractéristiques professionnelles.	
		Cependant, ces modèles peuvent reproduire des biais cachés présents	
		dans les données historiques (comme le genre, l'âge ou	
		l'expérience).	
		Afin d'assurer une prise de décision plus transparente et équitable, le	
		projet intègre des techniques d'intelligence artificielle explicable	
		(XAI) pour interpréter les prédictions du modèle et identifier les	
		sources de biais éventuelles.	
		Le travail inclut la construction d'un modèle d'apprentissage	
		supervisé, l'analyse des biais à travers les explications générées, et la	
		visualisation des résultats dans une interface interactive destinée aux	
		responsables RH.	
11	M. Asma	An Intelligent Chatbot for Personalized University Orientation	Saoudi Hadil
	Bezza	Recommendation	
		Description:	
1 1		Each year, many high school graduates struggle to choose the right	
		university program due to a lack of personalized guidance and clear	

		10 , 1 , 111 011 00 112 1 1	
		information about available fields. Traditional orientation sessions	
		are often limited in time and scope. This project sime to develop an intelligent shother that assists now.	
		This project aims to develop an intelligent chatbot that assists new	
		students in selecting the most suitable university orientation based on	
		their baccalaureate scores, academic background, and interests.	
		Using Natural Language Processing (NLP) and machine learning,	
		the chatbot will interact conversationally with users, analyze their	
		profiles, and recommend optimal academic paths. The system's goal	
		is to make orientation more accessible, personalized, and data-	
10	D 31.1.1	driven, helping students make informed educational choices	T. 11 ·
12	Dr. Nabil	Thème: Détection d'Anomalies et Maintenance Prédictive sur	Talbi
	Azizi	des Flux de Données IoT via l'Extraction en Temps Réel des	Mohamed
		Motifs Séquentiels Fermés	Amine
		Description:	
		L'Industrie 4.0 repose sur la collecte massive de données provenant	
		de capteurs (IoT) sur les chaînes de production. Ces données se	
		présentent sous forme de séquences d'événements (ex:	
		température_OK → pression_élevée → vibration_anormale →	
		arrêt_moteur). Prédire une panne avant qu'elle ne survienne	
		(maintenance prédictive) est un avantage compétitif majeur, réduisant les coûts et les temps d'arrêt. Le défi est d'analyser ces flux	
		de données à haute vélocité pour distinguer un comportement normal	
		d'une séquence d'événements précurseur d'une défaillance. Les	
		algorithmes comme ClaSP [1] et CloFAST [2] sont idéaux pour créer	
		un modèle compact et précis du comportement normal d'une	
		machine en se basant sur son historique.	
13	Dr. Hassiba	Thème: Deep Learning-Based Abnormal Human Behavior	Djoghlal Abid
13	Ben attia	Detection in Surveillance Videos	Djogmai Abiu
	Den attia	Description:	
		With the rapid growth of smart cities and the widespread use of	
		surveillance cameras, monitoring large amounts of video data has	
		become increasingly challenging. Manual observation is inefficient,	
		time-consuming, and prone to	
		human error. Therefore, the need for automated intelligent video	
		analysis systems has grown significantly. Detecting abnormal	
		behaviors such as fighting, theft, or fainting in real time can play a	
		crucial role in public safety, crime prevention, and emergency	
		response. This research aims to apply Artificial Intelligence (AI) and	
		Deep Learning techniques to automatically recognize and classify	
		abnormal human activities in surveillance footage	
14	Mr. Djellab	Thème: Détection automatique d'anomalies dans les images	Seghiri
	Issam	médicales à l'aide de l'apprentissage par transfert	Mohamed
		Description:	Islem
		L'imagerie médicale joue un rôle crucial dans le diagnostic et le suivi	
		de nombreuses maladies. Avec l'augmentation exponentielle des	
		données médicales, l'analyse automatique des images s'impose	
		comme une	
		solution pour assister les professionnels de la santé. Cependant,	
		entraîner des modèles d'apprentissage en profondeur de zéro	
		nécessite une grande quantité de données annotées et des ressources	
		computationnelles significatives. Les bases de données médicales sont souvent de petite	
		taille comparées aux bases de données utilisées pour des tâches plus	
		générales, comme ImageNet. Cette limitation rend difficile	
		l'entraînement de modèles profonds efficaces. L'apprentissage par	
		transfert permet de surmonter ce problème en exploitant des modèles	
		pré-entraînés sur des tâches génériques, puis en les ajustant à des	
		tâches spécifiques telles que l'analyse d'images médicales.	
15	Pr. Haouassi	Thème : Analyse et visualisation explicable des décisions des	Ben Othman
	Hichem	modèles d'apprentissage automatique	Douaa

		Description: Ce thème vise à rendre les modèles d'intelligence artificielle plus transparents et compréhensibles. En effet, les algorithmes de Machine Learning, notamment le SVM ou les modèles d'ensemble, sont souvent considérés comme des « boîtes noires » dont les décisions restent difficiles à interpréter. Ce projet a pour objectif de développer une approche permettant d'expliquer les décisions de ces modèles à travers des méthodes d'explicabilité telles que LIME ou SHAP, et de les représenter visuellement de manière claire et intuitive. L'étude portera sur l'analyse des facteurs influençant les prédictions, la comparaison entre différents modèles, ainsi que la mise en place d'un tableau de bord pour la visualisation des explications. Ce travail permettra non seulement de renforcer la confiance envers les systèmes d'IA, mais aussi d'aider les experts à mieux comprendre et valider les décisions automatiques dans des domaines sensibles comme la santé, la finance ou la cybersécurité.	
16	Dr.	Thème: Machine Learning-based Intrusion Detection System	Messai Dhaia-
	Abdeldjalil Ledmi	Description: Modern networks face expanding attack surfaces due to IoT, mobile, and distributed services, making signature-only IDS insufficient for novel threats; machine learning and anomaly detection can generalize to unseen attacks by learning normal traffic behavior and outliers.	eddine
17	Dr. Makhlouf	Thème: Uncovering Learning Behavior Trends in Educational	Ghalmi
18	Dr. Malik	Platforms Using Sequential Pattern Mining. Description: Educational platforms systematically record extensive event logs that capture student interactions over time, resulting in rich sequential data that reflect their learning behaviors. Traditional data analysis methods often fail to capture the temporal dependencies and recurring behavioral patterns embedded in such sequences. Sequential Pattern Mining (SPM) offers a robust analytical framework for discovering frequent and meaningful activity sequences within educational datasets. By applying SPM, this project aims to uncover recurrent learning trajectories, detect early signs of academic disengagement, and differentiate between successful and at-risk student profiles. The extracted sequential patterns will be analyzed to support predictive modeling of student performance, facilitate adaptive feedback mechanisms, and guide data-informed academic interventions. Ultimately, the objective is to demonstrate how SPM can enhance educational intelligence and contribute to improving learning support strategies in digital academic environments. Topic: Explainable AI for Sustainable Agriculture: A Case Study	Djouhar Kadri Maroua
10	Mehdi	on Crop Yield Prediction Description Explainable AI (XAI) techniques are methods and tools designed to make the decision-making process of machine learning models, especially complex ones like deep learning models, more understandable and interpretable to humans. These techniques help explain why and how a model arrived at a particular prediction, which is especially important in fields like sustainable environment, healthcare, finance, etc. where decisions have significant realworld impacts. Crop yield prediction aims to estimate how much crop (e.g., wheat, and maize) will be produced under given conditions — such as soil type, rainfall, temperature, fertilizer use, and region. Traditional AI models (like deep neural networks) can achieve high accuracy but act as "black boxes" — farmers and policymakers can't understand why the model	itauii Maivua

		predicts low or high yield. For this reason, this project employs interpretable and transparent models like Linear Regression, Decision Tree Regressor, or Random Forest to predict crop yield and derive humanunderstandable rules- Post-hoc XAI tools like SHAP and LIME, which explain yield outcome predictions of any model and support sustainable agricultural planning, particularly benefiting farmers.	
19	Dr. Abbes Fayçal	Title: Customizing Large Language Models for Enterprise Applications Description: Fine-tuning large language models (LLMs) refers to the process of taking a general-purpose pretrained model—such as GPT, LLaMA, or BERT—and retraining it on domain-specific data to improve its performance for particular business or industrial use cases. This customization refines the model's understanding of specialized vocabulary, regulatory language, and contextual nuances, ensuring more accurate, relevant, and compliant outputs for target industries such as healthcare, finance, law, and retail.	Boudraa Nada