المنشورات | ||||
Publications Internationales Exceptionnelles, A,B (selon les bases de données Internationales WOS,Scopus(1 par ligne en donnant obligatoirement le lien vers la revue /’URL) | ||||
1 | R. Aouafi, A. Zaidi, S.Kouachi. et al. A remark on “Dynamical behavior of a fractional three-species food chain model” [Nonlinear Dynamics, 95, February 2019]. Nonlinear Dyn 111, 13641–13651 (2023). https://link.springer.com2 | |||
2 | Dhuli, Sateeshkrishna, S. Kouachi, Anamika Chhabra, and Yatindra Nath Singh. “Network Robustness Analysis for IoT Networks using Regular Graphs.” IEEE Internet of Things Journal 9(11) (2022) https://ieeexplore.ieee.org/document/9552244. | |||
3 | E. M. Takyi, K. A. Fordjour, S. Kouachi and R. D. Parshad, A remark on “Global dynamics of a tritrophic food chain model subject to the Allee effects in the prey population with sexually reproductive generalized-type top predator” [Comp and math Methods. 2019, E1079, pp 1-23] Computational and Mathematical Methods, 15 March 2021. https://onlinelibrary.wiley.com/doi/abs/10.1002/cmm4.1159 | |||
4 |
K. P. Das and S. Kouachi, Effect of boundary conditions in controlling chaos in a tri-trophic food chain with density dependent mortality in inter-mediate predator, , Vol. 28, No. 1, pp. 1-27, Cambridge, UK; Florida, USA, (2021) https://openurl.ebsco.com/EPDB%3Agcd%3A2%3A14343922/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A149262114&crl=c. |
|||
5 |
Kundu, S., Kumari, N., Kouachi, S. Kundu P., Stability and bifurcation analysis of a heroin model with diffusion, delay and nonlinear incidence rate. Model. Earth Syst. Environ. 8, 1351–1362 (2022) https://doi.org/10.1007/s40808-021-01164-x |
|||
6 | S. Kouachi, SateeshkrishnaDhuli and Y. N. Singh, Convergence Rate Analysis of Periodic Gossip Algorithms for One-Dimensional Lattice WSNs, IEEE Vol. 20, Issue: 21 ( November1, 2020).https://ieeexplore.ieee.org/abstract/document/9121302 | |||
7 | R. D. Parshad, E. M. Takyi and S. Kouachi, A remark on “Study of a Leslie-Gower predator-prey model with prey defense and mutual interference of predators” [Chaos, Solitons & Fractals 120 (2019) 1–16], Chaos, Solitons and Fractals 123 (2019) 201–205. A remark on “Study of a Leslie-Gower predator-prey model with prey defense and mutual interference of predators” [Chaos, Solitons & Fractals 120 (2019) 1–16] – ScienceDirect | |||
8 | R. D. Parshad, S. Kouachiand Jingjing Lyu,Global Dynamics of a PDE Model for Eradication of Invasive Species,International Journal of Innovative Science and Research Technology Volume 4, Issue 4 , April – 2019.IJISRT19AP407a.pdf | |||
9 | Yan He, Kevin Wright, S. Kouachi and Chih-Chun Chien, Topology, edge states, and zero-energy states of ultracold atoms in one-dimensional optical superlattices with alternating on-site potentials or hopping coefficients, Physical Review A 97, 023618 (2018). Cited 5 times.https://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.023618 | |||
10 | Chih-Chun Chien, S. Kouachi, K. A. Velizhanin, Y. Dubi, and M. Zwolak, Thermal transport in dimerized harmonic lattices: Exact solution, crossover behavior, and extended reservoirs, Phys. Rev. E 95, 012137 – Published 23 January (2017). https://journals.aps.org/pre/abstract/10.1103/PhysRevE.95.012137 | |||
11 | R. D. Parshad, E. Quansah, M. A. Beauregard and S. Kouachi, On ‘‘small’’ data blow-up in a three species food chain model, Computers and Mathematics with Applications 73 pp. 576-587(2017). Cited 6A times.https://www.sciencedirect.com/science/article/pii/S0898122116306897 | |||
12 | R. D. Parshad, S. Kouachi, N. Kumari and H. Ait Abderrahmane, Global Existence and Long Time Dynamics of a Four Compartment Brusselator Type, Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathematical Analysis 24, 79-120 (2017).Global Existence and Long Time Dynamics of a Four Compartment Brusselator Type | |||
13 | R. D. Parshad, S. Kouachi and N. Kumari ,A comment on ‘‘Mathematical study of a Leslie-Gower typetritrophic population model in a polluted environment’’[Modeling in Earth Systems and Environment 2 (2016) 1–11] Model. EarthSyst. Environ. (2016). https://link.springer.com/article/10.1007/s40808-016-0158-y | |||
14 | S. Kouachi, Explicit Eigenvalues of some perturbed heptadiagonal Matrices via recurrent sequences, Lobachevskii Journal of Mathematics, Vol. 36, issue 1, pp 28-37(2015). | |||
15 | Carlos M. da Fonseca, S. Kouachi, Dan A. Mazilu and Irina Mazilu, A Multi-Temperature Kinetic Ising Model and the Eigenvalues of Some Perturbed Jacobi Matrices, Applied Mathematics and Computation 259 (2015) 205–211 | |||
16 | R. D. Parshad, N. Kumari and S. Kouachi,A remark on “Study of a Leslie-Gower-type tritrophic population model” [Chaos, Solitons & Fractals 14 (2002) 1275–1293], Chaos, Solitons and Fractals 71 (2015) 22–28. | |||
17 | S. Kouachi, Global Existence and Boundedness of Solutions for the General Activator-Inhibitor Model, Matematicki Vesnik, Vol. 66, issue3, pp. 274-282 (2014). | |||
18 | R. D. Parshad, S. Kouachi and J. B. Gutierrez, Global existence and asymptotic behavior of a model for biological control of invasive species via supermale introduction, Communications in Mathematical Sciences, Vol. 11, No. 4, pp. 951–972 (2013) | |||
19 | S. Kouachi, Global existence for coupled reaction diffusion systems modeling some reversible chemical reactions, Dynamics of Partial Differential Equations, Volume 8, Number 2 (June 2011), p. 79-88. | |||
20 | S. Kouachi, Global existence for reaction diffusion systems without nonlinearities growth condition, Mathematical Methods in the Applied Sciences, volume 34, issue 7(2010), pp. 798-802. | |||
21 | S. Kouachi and B. Rebaï, Invariant Regions and the Global Existence for Reaction Diffusion Systems with a Tridiagonal Matrix of Diffusion Coefficients, Memoirs on Differential Equations and Mathematical Physics, Volume 51 (2010), 93-108. | |||
22 | S. Kouachi, Eigenvalues and Eigenvectors of Some Tridiagonal Matrices with non constant diagonal entries, Appl. Math. (Warsaw) 35 (2008), 107-120. | |||
23 | S. Abdelmalek and S. Kouachi, A Simple Proof of Sylvester’s (Determinants) Identity,Applied Mathematical Sciences, Vol. 2, 2008, no. 32, 1571 – 1580. | |||
24 | S. Abdelmalek and S. Kouachi, Proof of Existence of Global Solutions for m-Components Reaction Diffusion Systems with Mixed Boundary Conditions via the Lyapunov Functional Method, J. Phys. A: Math. Theory. 40(2007) 12335-12350. | |||
25 | S. Kouachi, Eigenvalues and Eigenvectors of Tridiagonal matrices, Electronic Journal of linear Algebra, Vol 15 (April 2006) pp. 115-133. | |||
26 | S. Kouachi, Invariant regions and global existence of solutions for reaction diffusion systems with a full matrix of diffusion coefficients and no homogeneous boundary conditions, Georgian mathematical journal Vol 11(2004), Number 2, pp 349-359 | |||
27 | S. Kouachi, Global existence of solutions in invariant regions for reaction diffusion systems with a balance law and a full matrix of diffusion coefficients, E. J. Qual. Theory Diff. Equ., No. 4. (2003), 1-10. | |||
28 | S. Kouachi, Existence of global solutions to reaction diffusion systems with no homogeneous boundary conditions via a Lyapunov functional. Electron. J. Diff. Eqns Vol. 2002(2002), No. 88, pp. 1-13. | |||
29 | S. Kouachi, Global existence of solutions for reaction diffusion systems with a full matrix of diffusion coefficients and no homogeneous boundary conditions. E. J. Qual. Theory Diff. Equ. No.2 (2002), 1-10. | |||
30 | S. Kouachi, Uniform boundedness and global existence of solutions for reaction diffusion systems with a balance law and a full matrix of diffusion coefficients, E. J. Qual. Theory Diff. Equ., No. 7. (2001), 1-9. | |||
31 | S. Kouachi, Global existence of solutions to reaction diffusion systems via a Lyapunov functional. E. J. Diff. Eq. Vol. 2001(2001), No. 68, 1-10. | |||
32 | S. Kouachi and A. Youkana, Global existence and asymptotics for a class of reaction diffusion systems. Bul. Polish Academy Sc. V. 49, N° 3 (2001). | |||
33 | M. Kirane and S. Kouachi, Global solutions to a system of strongly coupled reaction-diffusion equations. NonlinearAnalysis Theory, Methods and Applications. Volume 26, number 8 (1996). | |||
34 | M. Kirane, S. Kouachi and N. Tatar, Nonexistence of global solutions to some quasi-linear hyperbolic equations with dynamic boundary conditions. Math-Nachr 176 (1995). | |||
35 | M. Kirane and S. Kouachi, A strongly nonlinear reaction diffusion model for a deterministic diffusive epidemic. Japan Journal of Industrial and Applied Mathematics. Volume 12, number 1, February 1995. | |||
36 | M. Kirane and S. Kouachi, Asymptotic behavior of a nonlinear model for the geographic diffusion of infectious diseases. Qualitative aspects and applications of nonlinear evolution equations (Trieste, 1993), 163-167, World Sci. Publishing, River Edge, NJ, 1994. | |||
37 | M. Kirane and S. Kouachi, Asymptotic Behavior for a system describing epidemics with migration and spatial spread of infection. Dynamic Systems and Applications. Volume 2, number 1, March 1993. pp. 121-131. | |||
38 | N. Mahloul, H. Ramoul and M. Abbas, « Convergence of Iterates of α -Bernstein Type Operators via Fixed Point of Generalized JS-Contraction Type Mappings », Numerical Functional Analysis and Optimization, VOL. 43, NO. 5, 580–598 (2022) (https://doi.org/10.1080/01630563.2022.2053155)
|
|||
39 | O. Zahi and H. Ramoul, «Fixed point theorems for (χ,F)-Dass–Gupta contraction mappings in b-metric spaces with applications to integral equations», Bol. Soc. Mat. Mex. 28:40 (2022) (https://link.springer.com/article/10.1007/s40590-022-00435-6)
|
|||
40 | D. Derouiche and H. Ramoul, « New fixed point results for F-contractions of Hardy–Rogers type in b-metric spaces with applications », Journal of fixed point theory and applications, 22: 86 (2020) (https://doi.org/10.1007/s11784-020-00822-4)
|
|||
41 | M. Cristofol, P. Gaitan and h. Ramoul, « Inverse problems for a two by two reaction diffusion system using Carleman estimate with one observation », Inverse Problems, 22 (2006) 1561-1573. (Consulter :http://www.iop.org/0266-5611/22/5/003) | |||
42 | H. Ramoul, « Carleman estimate for one-dimensional system of m coupled parabolic PDEs with BV diffusion coefficients », Boundary Value Problems, a SpringerOpen Journal, 2014/1/195 (Consulter: https://boundaryvalueproblems.springeropen.com/articles/10.1186/s13661-014 0195-2) | |||
43 | M. Cristofol, P. Gaitan, H. Ramoul and M. Yamamoto, « Identification of two coefficients with data of one component for a nonlinear parabolic system». Applicable Analysis, Vol. 91, No. 11, November 2012, 2073-2081. (Consulter :http://www.tandfonline.com/doi/full/10.1080/00036811.2011.583240) | |||
44 | H. Ramoul, M. Cristofol and P. Gaitan, « Stability results for a reaction-diffusion system with a single measurement » (avec M. Cristofol et P. Gaitan), Journal of Physics : Conference series, 73 (2007) 012018. (Consulter :http://www.iop.org/1742-6596/73/1/012018) | |||
45 | Mecheraoui Rachid et al. On the Meir–Keeler theorem in quasi-metric spaces. Journal of Fixed Point Theory and Applications, 2021, vol. 23, no 3, p. 1-16.https://link.springer.com/article/10.1007/s11784-021-00874-0 | |||
46 |
|
|||
47 | Khaldi Somia, RachidMecheraoui,and AimanMukheimer Anonlinearfractionalproblemwithmixed Volterra-Fredholm integro-differential equation: existence,uniqueness, HUR stability, and regularity ofsolutions.Journalof FunctionSpaces, 2020.https://www.hindawi.com/journals/jfs/2020/4237680/ | |||
48 | Mecheraoui Rachidetal. From G-Completeness to M-Completeness. Symmetry,2019,vol.11, no7, p.839. | |||
49 | Mecheraoui Rachid,FixedPointResultforαPf,g−IntegralContractiveMappingswith Applications. Indian Journal of Science andTechnology:ISSN0974-5645Volume9,Number7(2016), ArticleID84188. | |||
50 | Mecheraoui Rachid,Correction and generalization: “Fixed points ofα_admissibleMeir-Keelercontractionmappingsonquasi-metric spaces”. Global Journal of Pure and Applied Mathematics: ISSN0973-1768Volume 11,Number6(2015),pp.5019-5026. | |||
51 | AbdelfattahBouziani Andmecheraoui Rachid,TheRothe’sMethodtoaParabolicIntégro-differentialEquationwithNon-classicalBoundaryConditions. InternationalJournalofStochasticAnalysis:Volume2010 (2010),ArticleID519684 | |||
52 |
|
|||
53 | Identifying The Source Term In A Sobolev-Type Equation By Optimization Method
A Soudani, K Saoudi, A Chattouh, A Menasri Journal of Mathematical Analysis 14 (1), (2023) |
|||
54 | An interior point approach for linear complementarity problem using new parametrized kernel function
A Benhadid, K Saoudi, F Merahi Optimization 71 (15), 4403-4422, (2022) |
|||
55 | A Dynamic Contact Problem between Viscoelastic Piezoelectric Bodies with Friction and Damage
MLGTHA K. Saoudi Electronic journal of qualitative theory of differential equations 22 (5 …), (2022) |
|||
56 | Rothe–Legendre pseudospectral method for a semilinearpseudoparabolic equation with nonclassical boundary condition
A Chattouh, K Saoudi, M Nouar Nonlinear Analysis: Modelling and Control 27 (1), 38-53, (2022) |
|||
57 | Error analysis of Legendre-Galerkin spectral method for a parabolic equation with Dirichlet-Type non-local boundary conditions
A Chattouh, K Saoudi Mathematical Modelling and Analysis 26 (2), 287-303, (2021) |
|||
58 | Error analysis of Legendre-Galerkin spectral method for a parabolic equation with Dirichlet-Type non-local boundary conditions
A Chattouh, K Saoudi Mathematical Modelling and Analysis 26 (2), 287-303, (2021) |
|||
59 | On the Numerical Solution of a Semilinear Sobolev Equation Subject to Nonlocal Dirichlet Boundary Condition
AD Chattouh, K Saoudi Conference Proceedings of Science and Technology 3 (1), 11-18, (2020) |
|||
60 | Conditions for the local and global asymptotic stability of the time–fractional Degn–Harrison system
R Mezhoud, K Saoudi, A Zaraï, S Abdelmalek International Journal of Nonlinear Sciences and Numerical Simulation 21 (7-8 ), (2020) |
|||
61 | A new parameterized logarithmic kernel function for linear optimization with a double barrier term yielding the best known iteration bound
B Ayache K Saoudi Communications in Mathematics 28, (2020) |
|||
62 | Legendre-Chebyshev pseudo-spectral method for the diffusion equation with non-classical boundary conditions
A Chattouh, K Saoudi Moroccan Journal of Pure and Applied Analysis 6 (2), 303-317, (2020) |
|||
63 | Bardou, Dalal, et al. “Hair removal in dermoscopy images using variational autoencoders.” Skin Research and Technology 28.3 (2022): 445-454. | |||
64 | Lv, L., Bardou, D., Hu, P., Liu, Y., & Yu, G. (2022). Graph regularized nonnegative matrix factorization for link prediction in directed temporal networks using PageRank centrality. Chaos, Solitons & Fractals, 159, 112107. | |||
65 | Bouaziz, H., Bardou, D., Berghida, M., Chouali, S., &Lemouari, A. (2022). A novel hybrid multi-objective algorithm to solve the generalized cubic cell formation problem. Computers & Operations Research, 106069. | |||
66 | Lv, L., Hu, P., Bardou, D. , Zheng, Z., Zhang, T. Community Detection in Multilayer Networks via Semi-supervised Joint Symmetric Nonnegative Matrix Factorization. ieee transactions on network science and engineering. DOI: 10.1109/TNSE.2022.3231593 | |||
67 | Boumaraf, S., Liu, X., Wan, Y., Zheng, Z., Ferkous, C., Ma, X., … & Bardou, D. (2021). Conventional machine learning versus deep learning for magnification dependent histopathological breast cancer image classification: A comparative study with visual explanation. Diagnostics, 11(3), 528. | |||
68 | Lv, L., Zhang, K., Bardou, D., Li, X., Zhang, T., & Xue, W. (2021). Hits centrality based on inter-layer similarity for multilayer temporal networks. Neurocomputing, 423, 220-235. | |||
69 | Lv, L., Zhang, K., Bardou, D., Zhang, T., & Cai, Y. A New Centrality Measure Based on Topologically Biased Random Walks for Multilayer Networks. Journal of the Physical Society of Japan, 2019, 88(2), 024010. | |||
70 | Lv, L., Zhang, K., Bardou, D., Zhang, T., Zhang, J., Cai, Y., & Jiang, T. A new centrality measure based on random walks for multilayer networks under the framework of tensor computation. Physica A: Statistical Mechanics and its Applications, 2019, 526:121000. | |||
71 | Lv, L., Zhang, K., Zhang, T., Bardou, D., Zhang, J., Cai, Y. PageRank centrality for temporal networks. Physics Letters A, 2019, 383(12):1215-1222. | |||
72 | Zhang, T., Zhang, K., Lv, L., Bardou, D. Co-ranking for nodes, layers and timestamps in multilayer temporal networks. Chaos, Solitons & Fractals, 2019, 125: 88-96 | |||
73 | Zhang, T., Zhang, K., Lv, L., & Bardou, D. (2019). Graph Regularized Non-negative Matrix Factorization for Temporal Link Prediction Based on Communicability. Journal of the Physical Society of Japan, 88(7), 074002. | |||
74 | Bardou, Dalal, Kun Zhang, and Sayed M. Ahmad. “Timely Identification of Disease by Parallel Real-time Automated Processing of Huge Medical Databases of Images Distributed Geographically, through Knowledge Sharing.” Current Bioinformatics, 2018 13(2): 170-175. | |||
75 | Bardou, Dalal, Kun Zhang, and Sayed Mohammad Ahmad. “Lung sounds classification using convolutional neural networks.” Artificial intelligence in medicine, 2018, 88: 5869. | |||
76 | Bardou, Dalal, Kun Zhang, and Sayed Mohammad Ahmad. “Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks.” IEEE Access, 2018, 6: 24680 – 24693. |