المنشورات-مختبر الرياضيات والذكاء الاصطناعي


 

المنشورات
Publications Internationales Exceptionnelles, A,B (selon les bases de données Internationales WOS,Scopus(1 par ligne en donnant obligatoirement le lien vers la revue /’URL)
1 R. Aouafi, A. Zaidi, S.Kouachiet al. A remark on “Dynamical behavior of a fractional three-species food chain model” [Nonlinear Dynamics, 95, February 2019]. Nonlinear Dyn 111, 13641–13651 (2023). https://link.springer.com2
2 Dhuli, Sateeshkrishna, S. Kouachi, Anamika Chhabra, and Yatindra Nath Singh. “Network Robustness Analysis for IoT Networks using Regular Graphs.” IEEE Internet of Things Journal 9(11) (2022) https://ieeexplore.ieee.org/document/9552244.
3 E. M. Takyi, K. A. Fordjour,  S. Kouachi and R. D. Parshad, A remark on “Global dynamics of a tritrophic food chain model subject to the Allee effects in the prey population with sexually reproductive generalized-type top predator” [Comp and math Methods. 2019, E1079, pp 1-23] Computational and Mathematical Methods, 15 March 2021. https://onlinelibrary.wiley.com/doi/abs/10.1002/cmm4.1159
4

K. P. Das and S. Kouachi, Effect of boundary conditions in controlling chaos in a tri-trophic food chain with density dependent mortality in inter-mediate predator, , Vol. 28, No. 1, pp. 1-27, Cambridge, UK; Florida, USA, (2021) https://openurl.ebsco.com/EPDB%3Agcd%3A2%3A14343922/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A149262114&crl=c.

5

Kundu, S., Kumari, N., Kouachi, S. Kundu P.,  Stability and bifurcation analysis of a heroin model with diffusion, delay and nonlinear incidence rate. Model. Earth Syst. Environ. 8, 1351–1362 (2022) https://doi.org/10.1007/s40808-021-01164-x

6 S. KouachiSateeshkrishnaDhuli and Y. N. Singh, Convergence Rate Analysis of Periodic Gossip Algorithms for One-Dimensional Lattice WSNs, IEEE Vol. 20, Issue: 21 ( November1, 2020).https://ieeexplore.ieee.org/abstract/document/9121302
7 R. D. Parshad, E. M. Takyi and S. Kouachi, A remark on “Study of a Leslie-Gower predator-prey model with prey defense and mutual interference of predators” [Chaos, Solitons & Fractals 120 (2019) 1–16], Chaos, Solitons and Fractals 123 (2019) 201–205. A remark on “Study of a Leslie-Gower predator-prey model with prey defense and mutual interference of predators” [Chaos, Solitons & Fractals 120 (2019) 1–16] – ScienceDirect
8 R. D. Parshad, S. Kouachiand Jingjing Lyu,Global Dynamics of a PDE Model for Eradication of Invasive Species,International Journal of Innovative Science and Research Technology Volume 4, Issue 4 , April – 2019.IJISRT19AP407a.pdf
9 Yan He, Kevin Wright,  S. Kouachi and Chih-Chun Chien, Topology, edge states, and zero-energy states of ultracold atoms in one-dimensional optical superlattices with alternating on-site potentials or hopping coefficients, Physical Review A 97, 023618 (2018). Cited 5 times.https://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.023618
10 Chih-Chun Chien, S. Kouachi, K. A. Velizhanin, Y. Dubi, and M. Zwolak, Thermal transport in dimerized harmonic lattices: Exact solution, crossover behavior, and extended reservoirs, Phys. Rev. E 95, 012137 – Published 23 January (2017). https://journals.aps.org/pre/abstract/10.1103/PhysRevE.95.012137
11 R. D. Parshad, E. Quansah, M. A. Beauregard and S. Kouachi, On ‘‘small’’ data blow-up in a three species food chain model, Computers and Mathematics with Applications 73 pp. 576-587(2017). Cited 6A times.https://www.sciencedirect.com/science/article/pii/S0898122116306897
12 R. D. Parshad, S. Kouachi, N. Kumari and H. Ait Abderrahmane, Global Existence and Long Time Dynamics of a Four Compartment Brusselator Type, Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathematical Analysis 24, 79-120 (2017).Global Existence and Long Time Dynamics of a Four Compartment Brusselator Type
13 R. D. Parshad, S. Kouachi and N. Kumari ,A comment on ‘‘Mathematical study of a Leslie-Gower typetritrophic population model in a polluted environment’’[Modeling in Earth Systems and Environment 2 (2016) 1–11] Model. EarthSyst. Environ. (2016). https://link.springer.com/article/10.1007/s40808-016-0158-y
14 S. Kouachi, Explicit Eigenvalues of some perturbed heptadiagonal Matrices via recurrent sequences, Lobachevskii Journal of Mathematics, Vol. 36, issue 1, pp 28-37(2015).
15 Carlos M. da Fonseca, S. Kouachi, Dan A. Mazilu and Irina Mazilu, A Multi-Temperature Kinetic Ising Model and the Eigenvalues of Some Perturbed Jacobi Matrices, Applied Mathematics and Computation 259 (2015) 205–211
16 R. D. Parshad, N. Kumari and S. Kouachi,A remark on “Study of a Leslie-Gower-type tritrophic population model” [Chaos, Solitons & Fractals 14 (2002) 1275–1293], Chaos, Solitons and Fractals 71 (2015) 22–28.
17 S. Kouachi, Global Existence and Boundedness of Solutions for the General Activator-Inhibitor Model, Matematicki Vesnik, Vol. 66, issue3, pp. 274-282 (2014).
18 R. D. Parshad, S. Kouachi and J.  B. Gutierrez, Global existence and asymptotic behavior of a model for biological control of invasive species via supermale introduction, Communications in Mathematical Sciences, Vol. 11, No. 4, pp. 951–972 (2013)
19 S. Kouachi, Global existence for coupled reaction diffusion systems modeling some reversible chemical reactions, Dynamics of Partial Differential Equations, Volume 8, Number 2 (June 2011), p. 79-88.
20 S. Kouachi, Global existence for reaction diffusion systems without nonlinearities growth condition, Mathematical Methods in the Applied Sciences, volume 34, issue 7(2010), pp. 798-802.
21 S. Kouachi and B. Rebaï, Invariant Regions and the Global Existence for Reaction Diffusion Systems with a Tridiagonal Matrix of Diffusion Coefficients, Memoirs on Differential Equations and Mathematical Physics, Volume 51 (2010), 93-108.
22 S. Kouachi, Eigenvalues and Eigenvectors of Some Tridiagonal Matrices with non constant diagonal entries, Appl. Math. (Warsaw) 35 (2008), 107-120.
23 S. Abdelmalek and S. Kouachi, A Simple Proof of Sylvester’s (Determinants) Identity,Applied Mathematical Sciences, Vol. 2, 2008, no. 32, 1571 – 1580.
24 S. Abdelmalek and S. Kouachi, Proof of Existence of Global Solutions for m-Components Reaction Diffusion Systems with Mixed Boundary Conditions via the Lyapunov Functional Method, J. Phys. A: Math. Theory. 40(2007) 12335-12350.
25 S. Kouachi, Eigenvalues and Eigenvectors of Tridiagonal matrices, Electronic Journal of linear Algebra, Vol 15 (April 2006) pp. 115-133.
26 S. Kouachi, Invariant regions and global existence of solutions for reaction diffusion systems with a full matrix of diffusion coefficients and no homogeneous boundary conditions, Georgian mathematical journal Vol 11(2004), Number 2, pp 349-359
27 S. Kouachi, Global existence of solutions in invariant regions for reaction diffusion systems with a balance law and a full matrix of diffusion coefficients, E. J. Qual. Theory Diff. Equ., No. 4. (2003), 1-10.
28 S. Kouachi, Existence of global solutions to reaction diffusion systems with no homogeneous boundary conditions via a Lyapunov functional. Electron. J. Diff. Eqns Vol. 2002(2002), No. 88, pp. 1-13.
29 S. Kouachi, Global existence of solutions for reaction diffusion systems with a full matrix of diffusion coefficients and no homogeneous boundary conditions.  E. J. Qual. Theory Diff. Equ. No.2 (2002), 1-10.
30 S. Kouachi, Uniform boundedness and global existence of solutions for reaction diffusion systems with a balance law and a full matrix of diffusion coefficients, E. J. Qual. Theory Diff. Equ., No. 7. (2001), 1-9.
31 S. Kouachi, Global existence of solutions to reaction diffusion systems via a Lyapunov functional. E. J. Diff. Eq. Vol. 2001(2001), No. 68, 1-10.
32 S. Kouachi and A. Youkana, Global existence and asymptotics for a class of reaction diffusion systems. Bul. Polish Academy Sc. V. 49, N° 3 (2001).
33 M. Kirane and S. Kouachi, Global solutions to a system of strongly coupled reaction-diffusion equations. NonlinearAnalysis Theory, Methods and Applications. Volume 26, number 8 (1996).
34 M. Kirane, S. Kouachi and N. Tatar, Nonexistence of global solutions to some quasi-linear hyperbolic equations with dynamic boundary conditions. Math-Nachr 176 (1995).
35 M. Kirane and S. Kouachi, A strongly nonlinear reaction diffusion model for a deterministic diffusive epidemic. Japan Journal of Industrial and Applied Mathematics. Volume 12, number 1, February 1995.
36 M. Kirane and S. Kouachi, Asymptotic behavior of a nonlinear model for the geographic diffusion of infectious diseases. Qualitative aspects and applications of nonlinear evolution equations (Trieste, 1993), 163-167, World Sci. Publishing, River Edge, NJ, 1994.
37 M. Kirane and S. Kouachi, Asymptotic Behavior for a system describing epidemics with migration and spatial spread of infection. Dynamic Systems and Applications. Volume 2, number 1, March 1993. pp. 121-131.
38 N. Mahloul, H. Ramoul and M. Abbas,  « Convergence of Iterates of α -Bernstein Type Operators via Fixed Point of Generalized JS-Contraction Type Mappings », Numerical Functional Analysis and Optimization, VOL. 43, NO. 5, 580–598 (2022)  (https://doi.org/10.1080/01630563.2022.2053155)

 

39 O. Zahi and H. Ramoul,  «Fixed point theorems for (χ,F)-Dass–Gupta contraction mappings in b-metric spaces with applications to integral equations»,  Bol. Soc. Mat. Mex. 28:40 (2022) (https://link.springer.com/article/10.1007/s40590-022-00435-6)

 

40 D. Derouiche and H. Ramoul, « New fixed point results for F-contractions of Hardy–Rogers type in b-metric spaces with applications »,  Journal of fixed point theory and applications, 22: 86 (2020) (https://doi.org/10.1007/s11784-020-00822-4)

 

41 M. Cristofol, P. Gaitan and h. Ramoul, « Inverse problems for a two by two reaction diffusion system using Carleman estimate with one observation », Inverse Problems, 22 (2006) 1561-1573. (Consulter :http://www.iop.org/0266-5611/22/5/003)
42 H. Ramoul, « Carleman estimate for one-dimensional system of m coupled parabolic PDEs with BV diffusion coefficients », Boundary Value Problems, a SpringerOpen Journal, 2014/1/195 (Consulter: https://boundaryvalueproblems.springeropen.com/articles/10.1186/s13661-014 0195-2)
43 M. Cristofol, P. Gaitan, H. Ramoul and M. Yamamoto, « Identification of two coefficients with data of one component for a nonlinear parabolic system». Applicable Analysis, Vol. 91, No. 11, November 2012, 2073-2081. (Consulter :http://www.tandfonline.com/doi/full/10.1080/00036811.2011.583240)
44 H. Ramoul, M. Cristofol and P. Gaitan, « Stability results for a reaction-diffusion system with a single measurement » (avec M. Cristofol et P. Gaitan), Journal of Physics : Conference series, 73 (2007) 012018. (Consulter :http://www.iop.org/1742-6596/73/1/012018)
45 Mecheraoui Rachid et al. On the Meir–Keeler theorem in quasi-metric spaces. Journal of Fixed Point Theory and Applications, 2021, vol. 23, no 3, p. 1-16.https://link.springer.com/article/10.1007/s11784-021-00874-0
46
Mecheraoui Rachidetal. On Some Fixed Point Results in Fuzzy MetricSpaces.JournalofMathematics 2021https://www.hindawi.com/journals/jmath/2021/9196642/
47 Khaldi Somia, RachidMecheraoui,and AimanMukheimer Anonlinearfractionalproblemwithmixed Volterra-Fredholm integro-differential equation: existence,uniqueness, HUR stability, and regularity ofsolutions.Journalof FunctionSpaces, 2020.https://www.hindawi.com/journals/jfs/2020/4237680/
48 Mecheraoui Rachidetal. From G-Completeness to M-Completeness. Symmetry,2019,vol.11, no7, p.839.
49 Mecheraoui Rachid,FixedPointResultforαPf,g−IntegralContractiveMappingswith Applications. Indian Journal of Science andTechnology:ISSN0974-5645Volume9,Number7(2016), ArticleID84188.
50 Mecheraoui Rachid,Correction and generalization: “Fixed points ofα_admissibleMeir-Keelercontractionmappingsonquasi-metric spaces”. Global Journal of Pure and Applied Mathematics: ISSN0973-1768Volume 11,Number6(2015),pp.5019-5026.
51 AbdelfattahBouziani Andmecheraoui Rachid,TheRothe’sMethodtoaParabolicIntégro-differentialEquationwithNon-classicalBoundaryConditions. InternationalJournalofStochasticAnalysis:Volume2010 (2010),ArticleID519684
52
A Note on a System of General Mixed Variational Inequalities

ABK Saoudi Southeast Asian Bulletin of Mathematics c SEAMS. 2023 47 (05), 625-636, (2023)

53 Identifying The Source Term In A Sobolev-Type Equation By Optimization Method

A Soudani, K Saoudi, A Chattouh, A Menasri Journal of Mathematical Analysis 14 (1), (2023)

54 An interior point approach for linear complementarity problem using new parametrized kernel function

A Benhadid, K Saoudi, F Merahi Optimization 71 (15), 4403-4422, (2022)

55 A Dynamic Contact Problem between Viscoelastic Piezoelectric Bodies with Friction and Damage

MLGTHA K. Saoudi Electronic journal of qualitative theory of differential equations 22 (5 …), (2022)

56 Rothe–Legendre pseudospectral method for a semilinearpseudoparabolic equation with nonclassical boundary condition

A Chattouh, K Saoudi, M Nouar Nonlinear Analysis: Modelling and Control 27 (1), 38-53, (2022)

57 Error analysis of Legendre-Galerkin spectral method for a parabolic equation with Dirichlet-Type non-local boundary conditions

A Chattouh, K Saoudi Mathematical Modelling and Analysis 26 (2), 287-303, (2021)

58 Error analysis of Legendre-Galerkin spectral method for a parabolic equation with Dirichlet-Type non-local boundary conditions

A Chattouh, K Saoudi Mathematical Modelling and Analysis 26 (2), 287-303, (2021)

59 On the Numerical Solution of a Semilinear Sobolev Equation Subject to Nonlocal Dirichlet Boundary Condition

AD Chattouh, K Saoudi Conference Proceedings of Science and Technology 3 (1), 11-18, (2020)

60 Conditions for the local and global asymptotic stability of the time–fractional Degn–Harrison system

R Mezhoud, K Saoudi, A Zaraï, S Abdelmalek International Journal of Nonlinear Sciences and Numerical Simulation 21 (7-8 ), (2020)

61 A new parameterized logarithmic kernel function for linear optimization with a double barrier term yielding the best known iteration bound

B Ayache K Saoudi Communications in Mathematics 28, (2020)

62 Legendre-Chebyshev pseudo-spectral method for the diffusion equation with non-classical boundary conditions

A Chattouh, K Saoudi Moroccan Journal of Pure and Applied Analysis 6 (2), 303-317, (2020)

63 Bardou, Dalal, et al. “Hair removal in dermoscopy images using variational autoencoders.” Skin Research and Technology 28.3 (2022): 445-454.
64 Lv, L., Bardou, D., Hu, P., Liu, Y., & Yu, G. (2022). Graph regularized nonnegative matrix factorization for link prediction in directed temporal networks using PageRank centrality. Chaos, Solitons & Fractals, 159, 112107.
65 Bouaziz, H., Bardou, D., Berghida, M., Chouali, S., &Lemouari, A. (2022). A novel hybrid multi-objective algorithm to solve the generalized cubic cell formation problem. Computers & Operations Research, 106069.
66 Lv, L., Hu, P., Bardou, D. , Zheng, Z., Zhang, T. Community Detection in Multilayer Networks via Semi-supervised Joint Symmetric Nonnegative Matrix Factorization. ieee transactions on network science and engineering. DOI: 10.1109/TNSE.2022.3231593
67 Boumaraf, S., Liu, X., Wan, Y., Zheng, Z., Ferkous, C., Ma, X., … & Bardou, D. (2021). Conventional machine learning versus deep learning for magnification dependent histopathological breast cancer image classification: A comparative study with visual explanation. Diagnostics, 11(3), 528.
68 Lv, L., Zhang, K., Bardou, D., Li, X., Zhang, T., & Xue, W. (2021). Hits centrality based on inter-layer similarity for multilayer temporal networks. Neurocomputing, 423, 220-235.
69 Lv, L., Zhang, K., Bardou, D., Zhang, T., & Cai, Y. A New Centrality Measure Based on Topologically Biased Random Walks for Multilayer Networks. Journal of the Physical Society of Japan, 2019, 88(2), 024010.
70 Lv, L., Zhang, K., Bardou, D., Zhang, T., Zhang, J., Cai, Y., & Jiang, T. A new centrality measure based on random walks for multilayer networks under the framework of tensor computation. Physica A: Statistical Mechanics and its Applications, 2019, 526:121000.
71 Lv, L., Zhang, K., Zhang, T., Bardou, D., Zhang, J., Cai, Y. PageRank centrality for temporal networks. Physics Letters A, 2019, 383(12):1215-1222.
72 Zhang, T., Zhang, K., Lv, L., Bardou, D. Co-ranking for nodes, layers and timestamps in multilayer temporal networks. Chaos, Solitons & Fractals, 2019, 125: 88-96
73 Zhang, T., Zhang, K., Lv, L., & Bardou, D. (2019). Graph Regularized Non-negative Matrix Factorization for Temporal Link Prediction Based on Communicability. Journal of the Physical Society of Japan, 88(7), 074002.
74 Bardou, Dalal, Kun Zhang, and Sayed M. Ahmad. “Timely Identification of Disease by Parallel Real-time Automated Processing of Huge Medical Databases of Images Distributed Geographically, through Knowledge Sharing.” Current Bioinformatics, 2018 13(2): 170-175.
75 Bardou, Dalal, Kun Zhang, and Sayed Mohammad Ahmad. “Lung sounds classification using convolutional neural networks.” Artificial intelligence in medicine, 2018, 88: 5869.
76 Bardou, Dalal, Kun Zhang, and Sayed Mohammad Ahmad. “Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks.” IEEE Access, 2018, 6: 24680 – 24693.

 

 

 

Subscribe
نبّهني عن
guest
0 تعليقات
Oldest
Newest Most Voted
Inline Feedbacks
View all comments